A simple characterization of the minimal obstruction sets for three-state perfect phylogenies

نویسندگان

  • Brad Shutters
  • David Fernández-Baca
چکیده

Lam, Gusfield, and Sridhar (2009) showed that a set of three-state characters has a perfect phylogeny if and only if every subset of three characters has a perfect phylogeny. They also gave a complete characterization of the sets of three three-state characters that do not have a perfect phylogeny. However, it is not clear from their characterization how to find a subset of three characters that does not have a perfect phylogeny without testing all triples of characters. In this note, we build upon their result by giving a simple characterization of when a set of three-state characters does not have a perfect phylogeny that can be inferred from testing all pairs of characters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizing the Splits Equivalence Theorem and Four Gamete Condition: Perfect Phylogeny on Three-State Characters

We study the three state perfect phylogeny problem and establish a generalization of the four gamete condition (also called the Splits Equivalence Theorem) for sequences over three state characters. Our main result is that a set of input sequences over three state characters allows a perfect phylogeny if and only if every subset of three characters allows a perfect phylogeny. In establishing th...

متن کامل

Colorings of Hypergraphs, Perfect Graphs, and Associated Primes of Powers of Monomial Ideals

Let H denote a finite simple hypergraph. The cover ideal of H, denoted by J = J(H), is the monomial ideal whose minimal generators correspond to the minimal vertex covers of H. We give an algebraic method for determining the chromatic number of H, proving that it is equivalent to a monomial ideal membership problem involving powers of J . Furthermore, we study the sets Ass(R/Js) by exploring th...

متن کامل

Separated finitely supported $Cb$-sets

The monoid $Cb$ of name substitutions and the notion of finitely supported $Cb$-sets introduced by Pitts as a generalization of nominal sets. A simple finitely supported $Cb$-set is a one point extension of a cyclic nominal set. The support map of a simple finitely supported $Cb$-set is an injective map. Also, for every two distinct elements of a simple finitely supported $Cb$-set, there exists...

متن کامل

Maintenance Cost Analysis for Replacement Model with Perfect Minimal Repair

With the evolution of technology, the maintenance of sophisticated systems is of concern for system engineers and system designers. The maintenance cost of the system depends in general on the replacement and repair policies. The system replacement may be in a strictly periodic fashion or on a random basis depending upon the maintenance policy. At failure, the repair of the system may be perfor...

متن کامل

The (non-)existence of perfect codes in Lucas cubes

A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2012